Midgut bacteria required for Bacillus thuringiensis insecticidal activity.

نویسندگان

  • Nichole A Broderick
  • Kenneth F Raffa
  • Jo Handelsman
چکیده

Bacillus thuringiensis is the most widely applied biological insecticide and is used to manage insects that affect forestry and agriculture and transmit human and animal pathogens. This ubiquitous spore-forming bacterium kills insect larvae largely through the action of insecticidal crystal proteins and is commonly deployed as a direct bacterial spray. Moreover, plants engineered with the cry genes encoding the B. thuringiensis crystal proteins are the most widely cultivated transgenic crops. For decades, the mechanism of insect killing has been assumed to be toxin-mediated lysis of the gut epithelial cells, which leads to starvation, or B. thuringiensis septicemia. Here, we report that B. thuringiensis does not kill larvae of the gypsy moth in the absence of indigenous midgut bacteria. Elimination of the gut microbial community by oral administration of antibiotics abolished B. thuringiensis insecticidal activity, and reestablishment of an Enterobacter sp. that normally resides in the midgut microbial community restored B. thuringiensis-mediated killing. Escherichia coli engineered to produce the B. thuringiensis insecticidal toxin killed gypsy moth larvae irrespective of the presence of other bacteria in the midgut. However, when the engineered E. coli was heat-killed and then fed to the larvae, the larvae did not die in the absence of the indigenous midgut bacteria. E. coli and the Enterobacter sp. achieved high populations in hemolymph, in contrast to B. thuringiensis, which appeared to die in hemolymph. Our results demonstrate that B. thuringiensis-induced mortality depends on enteric bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm, Manduca sexta.

It was recently proposed that gut bacteria are required for the insecticidal activity of the Bacillus thuringiensis-based insecticide, DiPel, toward the lepidopterans Manduca sexta, Pieris rapae, Vanessa cardui, and Lymantria dispar. Using a similar methodology, it was found that gut bacteria were not required for the toxicity of DiPel or Cry1Ac or for the synergism of an otherwise sublethal co...

متن کامل

Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism.

Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obta...

متن کامل

Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells.

The insecticidal Cry proteins produced by Bacillus thuringiensis strains are pore-forming toxins (PFTs) that bind to the midgut brush border membrane and cause extensive damage to the midgut epithelial cells of susceptible insect larvae. Force-feeding B. thuringiensis PFTs to Lymantria dispar larvae elicited rapid and massive shedding of a glycosylphosphatidylinositol (GPI)-anchored aminopeptid...

متن کامل

Changes in Permeability of Brush Border Membrane Vesicles from Spodoptera littoralis Midgut Induced by Insecticidal Crystal Proteins from Bacillus thuringiensis.

Bacillus thuringiensis insecticidal crystal proteins (ICPs) are thought to induce pore formation in midgut cell membranes of susceptible insects. Cry1Ca, which is significantly active in Spodoptera littoralis, made brush border membrane vesicles permeable to KCl (osmotic swelling was monitored by the light scattering technique); the marginally active ICPs Cry1Aa, Cry1Ab, and Cry1Ac did not.

متن کامل

Protein engineering of δ-endotoxins of Bacillus thuringiensis

Bacillus thuringiensis (Bt) is a valuable environmentfriendly biopesticide, which occupies 90% of the world biopesticide market. Its insecticidal properties are attributed to the presence of δ-endotoxins which are synthesized during the sporulation phase of the bacterium. δ-endotoxin or crystal toxin is a multidomain protein molecule comprising of three distinct domains. Domain I is made of sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 41  شماره 

صفحات  -

تاریخ انتشار 2006